3 research outputs found

    CT-LungNet: A Deep Learning Framework for Precise Lung Tissue Segmentation in 3D Thoracic CT Scans

    Full text link
    Segmentation of lung tissue in computed tomography (CT) images is a precursor to most pulmonary image analysis applications. Semantic segmentation methods using deep learning have exhibited top-tier performance in recent years, however designing accurate and robust segmentation models for lung tissue is challenging due to the variations in shape, size, and orientation. Additionally, medical image artifacts and noise can affect lung tissue segmentation and degrade the accuracy of downstream analysis. The practicality of current deep learning methods for lung tissue segmentation is limited as they require significant computational resources and may not be easily deployable in clinical settings. This paper presents a fully automatic method that identifies the lungs in three-dimensional (3D) pulmonary CT images using deep networks and transfer learning. We introduce (1) a novel 2.5-dimensional image representation from consecutive CT slices that succinctly represents volumetric information and (2) a U-Net architecture equipped with pre-trained InceptionV3 blocks to segment 3D CT scans while maintaining the number of learnable parameters as low as possible. Our method was quantitatively assessed using one public dataset, LUNA16, for training and testing and two public datasets, namely, VESSEL12 and CRPF, only for testing. Due to the low number of learnable parameters, our method achieved high generalizability to the unseen VESSEL12 and CRPF datasets while obtaining superior performance over Luna16 compared to existing methods (Dice coefficients of 99.7, 99.1, and 98.8 over LUNA16, VESSEL12, and CRPF datasets, respectively). We made our method publicly accessible via a graphical user interface at medvispy.ee.kntu.ac.ir

    Association of Polymorphisms at LDLR Locus with Coronary Artery Disease Independently from Lipid Profile

    No full text
    Coronary artery disease (CAD) is the leading cause of mortality in many parts of the world. Genome-wide association studies (GWAS) have identified several genetic variants associated with CAD in Low-density lipoprotein receptor (LDLR) locus. This study was evaluated the possible association of genetic markers at LDLR locus with CAD irrespective to lipid profile and as well as the association of these SNPs with severity of CAD in Iranian population. Sequencing of 2 exons in LDLR gene (Exon 2, 12) and part of intron 30 of SMARCA4 gene include rs1122608, was performed in 170 Iranian patients angiographically confirmed CAD and 104 healthy controls by direct sequencing. Sullivan's scoring system was used for determining the severity of CAD in cases. Our results showed that homozygote genotypes of rs1122608 (P<0.0001), rs4300767 (P<0.005) and rs10417578 (p<0.007) SNPs have strong protective effects on the CAD. In addition, we found that rs1122608 (GT or TT) was at higher risk of three vessel involvement compared to single vessels affecting (P=0.01)

    Systematic evaluation of SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay

    No full text
    Objective: The COVID-19 pandemic poses an immense need for accurate, sensitive and high-throughput clinical tests, and serological assays are needed for both overarching epidemiological studies and evaluating vaccines. Here, we present the development and validation of a high-throughput multiplex bead-based serological assay. Methods: More than 100 representations of SARS-CoV-2 proteins were included for initial evaluation, including antigens produced in bacterial and mammalian hosts as well as synthetic peptides. The five best-performing antigens, three representing the spike glycoprotein and two representing the nucleocapsid protein, were further evaluated for detection of IgG antibodies in samples from 331 COVID-19 patients and convalescents, and in 2090 negative controls sampled before 2020. Results: Three antigens were finally selected, represented by a soluble trimeric form and the S1-domain of the spike glycoprotein as well as by the C-terminal domain of the nucleocapsid. The sensitivity for these three antigens individually was found to be 99.7%, 99.1% and 99.7%, and the specificity was found to be 98.1%, 98.7% and 95.7%. The best assay performance was although achieved when utilising two antigens in combination, enabling a sensitivity of up to 99.7% combined with a specificity of 100%. Requiring any two of the three antigens resulted in a sensitivity of 99.7% and a specificity of 99.4%. Conclusion: These observations demonstrate that a serological test based on a combination of several SARS-CoV-2 antigens enables a highly specific and sensitive multiplex serological COVID-19 assay
    corecore